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Effect of Boundary Condition History on the Symmetry
Breaking Bifurcation of Wall-Driven Cavity Flows
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A symmetry breaking nonlinear fluid flow in a two-dimensional wall-driven square cavity

taking symmetric boundary condition after some transients has been investigated numerically. It

has been shown that the symmetry breaking critical Reynolds number is dependent on the time

history of the boundary condition. The cavity has at least three stable steady state solutions for
Re=300—375, and two stable solutions if Re>400. Also, it has also been showed that a par-
ticular solution among several possible solutions can be obtained by a controlled boundary

condition.
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1. Introduction

The nonlinear hydrodynamic convection prod-
uces bifurcating fluid flows if the flow inertia
is sufficiently larger than the viscous friction.
Among various bifurcating phenomena, a Pitch-
fork bifurcation, or, a formation of steady, sym-
metry-broken fluid flow field under a symmetric
boundary condition, is the subject of this study.
In most high Reynolds number engineering flow,
this sort of bifurcation draws little attention be-
cause the flow is usually turbulent. In a turbulent
flow, a local phenomenon is not isolated within a
limited region because of large scale energetic
turbulent eddies. Instead, it spreads over a large
space, and the asymmetry smears out. However,
inside a MEMS fluidic device, a working fluid
sometimes has small characteristic length and
velocity scales to yield Re=9(10) ~9(100). In
such a Reynolds number range, the possibility of
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Pitchfork bifurcation should be investigated with
a special attention because it greatly changes mix-
ing and heat transfer characteristics inside the
fluidic device. Symmetry breaking bifurcations
have been observed experimentally and numeric-
ally in several flow geometries: in the sudden
expansion channel by Durst et al.(1974); in the
twin jet confined with side walls by Soong et
al.(1998); in the counter-flow jet by Salinger
et al.(2001); and, around a circular cylinder
confined in the channel by Sahin and Owens
(2004). All these researches report the critical
Reynolds number for the transition from sym-
metric to asymmetric state. However, neither of
them considered the effect of boundary and/or
initial conditions at all. Presumably, the com-
ment of Drikakis (1997) is the only one about
this issue. He noted that the computed critical
Reynolds number for the symmetry breaking bi-
furcation of the sudden expansion channel is
different from that of Durst et al.(1974), and
supposed that the difference of the initial condi-
tion between the two researches is responsible
for the discrepancy. In this study, we are going to
address the effect of boundary condition change
history on the Pitchfork bifurcation inside a
square cavity.
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2. Bifurcation in a Cavity

Although the experimental realization is im-
possible, a cavity flow is an excellent flow model
in understanding complex fluid flow phenomena.
A cavity has simple geometry and well-defined
boundary conditions, but the fluid flow shows
separation and reattachment of fluid stream and
formation of vortical structures. Because of the
simple geometry and the complex flow pheno-
mena, the cavity flow serves as a benchmark flow.
Ghia et al.(1982) adopted the cavity flow in order
to validate their numerical scheme. Whereas,
Choi et al.(2004) employed the cavity flow in
order to evaluate the relative performance of se-
veral turbulence models. Bifurcation of a square
cavity driven by a single, top-wall has been nu-
merically studied by Goodrich et al.(1990) and
Shen (1991). They observed a persisting oscilla-
tion of velocity components under stationary
boundary condition when the flow Reynolds
number is high enough. Comprehensive and in-
depth numerical study of rectangular cavity driv-
en by two opposing side-walls has been done
by Albensoeder et al.(2001). Their computa-
tions has been done on a three dimensional para-
meter-space (Rey, Res, I'), where both Re; and
Re; are Reynolds numbers based on the two
moving wall and I is the aspect ratio of the
cavity. The continuation method has been used
to track the bifurcating solution on the three di-
mensional parameter-space, or the solution at a
specific point A(Re1, Rez, I') has been used as
an initial guess at a new point A-+J8A. They
identified multiple steady state solutions under
a fixed boundary condition. However, in a prac-
tical (engineering) sense, multiplicity of solution
causes confusion because they don’t know which
solution will be yielded among several possibil-
ities. It is clear that initial and/or boundary con-
ditions contribute to the nonlinear process and
finally to the steady state solution. As far as the
present author’s knowledge, no such works have
been reported in technical periodicals. Present
research address this issue for a cavity shown in
Fig. 1. The cavity is driven by two neighboring
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Fig. 1 Configuration of the cavity

wall which are moving towards their joint corner.
Clearly, a diagonally symmetric pattern is expect-
ed at a sufficiently low Reynolds number. But the
symmetry is broken if the nonlinear convective
process dominates the viscous diffusive process
(for example, at Re=400, Cho, 1999). In this
study, in order to investigate the effect of tempor-
al development history of boundary condition on
the steady state solution, two different boundary
conditions are applied :

The symmetric boundary condition case,
Uwair= Vwaur=Usrer, t >0 (1)
The asymmetric boundary condition case,

Uwall: Uref» t>0
0, t<r ()

Vwa”:{ Uref t=>r

Or, the two moving walls start to accelerate sim-
ultaneously for the symmetric boundary condi-
tion case. Whereas the top wall starts to accelerate
first and the right side wall accelerates after time
interval 7 for the asymmetric boundary condition
case. But the two cases have the same condition
for t=r. It is assumed that the flow is at rest
initially for both cases.

3. Numerical Methods

The flow inside the cavity is unsteady, 2-di-
mensional, and incompressible. We adopt the
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traditional vorticity-stream function formulation
is preferred to velocity-based ones because the
pressure term disappears naturally. In this study,
however, instead of solving two separate equa-
tions for vorticity and stream function, the two
equations are coupled to yield the so-called pure
stream function formulation (Canuto et al., 1988):

%#}( ¥, Re) (3)

where

_NT ¥ AT | o¥ AT

C="Re "oy ox Tax oy (4)

The symbols & and A denote the stream func-
tion and the Laplacian operator, respectively. All
variables are normalized with Ugzr and H, and
Re is the Reynolds number. To drive the numer-
ical solution from the stagnant initial state to the
developed steady state the following second order
accurate scheme is employed. The Crank-Nicol-
son scheme is adopted for time integration :

ATHR=0,55¢ (GG +ATT (5)

where superscripts # and % are time level and
sub-iteration index, respectively. A system ma-
trix is constructed with the Laplacian operator,
and the iterative solution is easily obtained by
applying the simple tri-diagonal matrix algorithm
at a fixed time level until the solution is con-
verged. The second order accurate central differ-
encing is adopted for spatial gradient terms.
Therefore the interior solution is expected to be
second order accurate both in time and space.
Along flow boundaries, A as well as ¥ itself
should be specified. Relevant second order accu-
rate boundary conditions along the north wall,
for example, are

+1,k+1

TN =0 (6)
+1,k +1,k +1

8 ilej—l - i,an—z +6hu£lzv]

ARG =

7
207 @)
where 7 is the grid spacing. Four grids near the
wall are distributed with uniform spacing, and it
is gradually increased towards the center of the
cavity. For all computations in this study, the grid

number is 81 X 81, and the Courant number, C=
Uxerdt/ h, varies between 0.164—1.000 within the
cavity. To verify present numerical method, the
usual top-lid driven cavity of Ghia et al.(1982)
has been computed. The sub-iteration has been
continued until | et — gntbk| <1077, Ghia
et al. adopted very fine grid and reported the
strength of the primary recirculating cell in terms
of streamfunction : it was —0.1139 and —0.1179
at Re=400 and 1000, respectively. Present com-
putations returned —0.11325 and —0.11727 for
each case. Therefore, the numerical error is 0.57%
at Re=400 and 0.54% at Re=1000. Admitting
this level of numerical error, we have computed
the present cavity for Re=100—1000. In asym-
metric boundary condition cases, the time inter-
val between accelerations, 7, is set at 100 for
all Reynolds numbers studied here. Preliminary
computations with only one moving wall yield a
quasi steady state after t=100 for all cases. In fact,
the computation with the asymmetric boundary
condition can be considered as a computation
with the symmetric boundary condition but with
a nonzero, different initial condition. To obtain
steady state solutions, time marching is continued
until there are no changes in Pnax and Pnin.

4. Results

Typical steady state fluid flow fields are shown
in Fig. 2. At Re=100, both the symmetric bound-
ary condition case, Rel00SM, and the asymme-
tric boundary condition case, Rel00AS, yield
identical, diagonally symmetric flow pattern. Be-
sides the two big counter rotating bubbles, two
tiny counter rotating bubbles are formed near
the bottom left corner of the cavity. Thereby, the
fluid stream separated at top right corner does
not arrive at bottom left corner but away from it.
The size of the two corner bubbles at Re=200 is
decreased with the increase of the Reynolds num-
ber for both Re200SM and Re200AS : At higher
Reynolds number, the increased momentum of
fluid moving from top right corner towards bot-
tom left corner compresses the corner bubbles
more tightly. Further increase of Reynolds num-
ber yields a drastic change of flow pattern above
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a certain Reynolds number. For the AS case, the
change occurs between Re=275 and 300 (Figs. 2
and 3). Similar change also occurs for the SM
case, but the change occurs at much higher Rey-
nolds number between Re=375 and 400. At Re=
300, the diagonal symmetry is maintained for
Re300SM, but broken for Re300AS. This result
clearly shows that the symmetry breaking critical

Re100SM

Fig. 2 Steady state streamline patterns

Reynolds number is strongly dependent on the
time history of the boundary condition. Though
it is not reported here, if we change the accelera-
tion sequence of two moving walls of Re300AS,
a diagonally mirrored flow pattern is obtained.
Thus, there exist, at least, three different stable
steady state solutions between Re=300—375:
one symmetric solution and two asymmetric, mir-
ror-imaged solutions. Above Re=400, both SM
and AS cases have indistinguishable, virtually
the same, asymmetric solution. It seems that the
symmetric flow pattern is unstable. And, only the
two mirror-imaged asymmetric solutions could
be obtained. Vorticity values at the center of two
counter rotating big bubbles are plotted in Fig.
4. For both SM and AS cases, the bifurcation
is produced, and consistent with the result of
Figs. 2 and 3. Interesting point is that the bifurca-
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Fig. 3 Bifurcation of the reattachment length
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Fig. 4 Bifurcation of the vorticity at the center of
recirculating bubbles
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tion path of vorticity : The symmetry breaking
bifurcation occurs suddenly above the critical
Reynolds number for SM case, but the change is
gradual for AS case. Notable thing is the slight,
wavy variation before the bifurcation. However,
unfortunately, the present author could not ex-
plain this behavior. It seems that this is not due
to a numerical imperfection of present method :
Repeated computations with much more tight
criterions for the convergence of sub-iteration
and steady state returned the same behavior.

5. Summary

In this study, it is observed numerically that
the symmetry breaking critical Reynolds number
is strongly dependent on the time history of the
boundary condition, and that there exist at least
three stable steady state solutions between Re=
300—375, and two stable steady state solutions
for Re >400. Multiplicity of fluid flow may cause
unexpected behavior for a small sized machine
in which the flow Reynolds number is not high
enough. In this study, it is also showed that a
particular solution among several possible solu-
tions can be obtained by a controlled boundary
condition. Devising a control or trigger method
to jump from a particular solution to other one
is supposed to be a challenging area.
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